Description

The model ESX10-Sxxx extends our product group of electronic overcurrent protection devices for DC 24 V applications.
At a width of only 12.5 mm it provides selective protection for all DC 24 V load circuits. This is achieved by a combination of active electronic current limitation in the event of a short circuit and overload disconnection typically from 1.2 times rated current. The ESX10-S is a plug-in type and thus allows quick and easy installation for groups of devices with several circuits on the power distribution systems Module 17plus and SVSxx.
DC 24 V switch-mode power supplies are widely used in automation today. In the event of an overload, however, they turn down the output voltage which is intended to power all connected loads. So if there is a failure in a single load of the system, the supply voltage will break down also in all other load circuits. Not only does this frequently cause undefined fault conditions, but it can even lead to machine stoppages or system downtimes.

This is exactly where the ESX10-S comes in by responding to the overload conditions faster than the switch-mode power supply. The max. possible overcurrent is limited to typically 1.4 times rated current (see table 1). This allows switching on capacitive loads of up to 20,000 $\mu \mathrm{F}$, but a disconnection will only be effected in the event of an overload or short circuit. For adjustment to the load conditions the current rating can be selected by means of a rotary switch from 1A to 10A. Status and failure indication is by means of a multi-coloured LED, an integral short circuit proof status output (single or group alarms) or via a potential-free relay contact (change-over contact). Remote actuation is possible via a remote reset signal. The manual ON/OFF switch on the device itself allows start-up of certain individual load circuits. As soon as the ESX10-S detects overload or short circuit in its load circuit, it blocks the load output transistor and disconnects the current flow in the faulty circuit. After remedy of the failure, the load output of the ESX10-S is re-activated by an electronic reset signal or manually by actuating the ON/OFF switch on the device.

US patent number: US 6,490,141 B2

Features and Benefits

- Selective load protection, electronic trip curve
- All types of loads can be connected (DC 24 V motors upon request)
- Active current limitation when switching on capacitive loads up to min. 20,000 $\mu \mathrm{F}$ and in case of overload/short circuit
- Whole-number adjustable current ratings from 1A to 10 A by means of rotary switch
- Reliable overload disconnection typically from $1.2 \times I_{N}$ even with long load lines or small cable cross sections
- Manuel ON/OFF switch (S1)
- Clear status indication by means of LED, electronic status output SF or signal output F (potential-free auxiliary contact)
- Electronic reset input RE, control input IN
- Integral fail-safe-element
- Width per channel only 12.5 mm
- Plug-in type mounting on power distribution system Module 17plus and SVSxx.

Approvals

Authority	Standard	Rated voltage	Current ratings
UL	UL 2367	DC 24 V	$1 \ldots 10 \mathrm{~A}$
UL	UL 508 C22.2 No 14	DC 24 V	$1 \ldots 10 \mathrm{~A}$

Technical data ($\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{B}}=\mathrm{DC} 24 \mathrm{~V}$)

Operating data	
Operating voltage U_{B}	DC 24 V (18... 32 V)
Current ratings I_{N}	adjustable ratings: 1 A through 10 A in 1 A steps
Standby current I_{0}	in ON condition: typically 25 mA with version -103/-115/-125 typically 20 mA with version -114/-117/-124/-127
Visual status indication	multicoloured LED: green: - load circuit connected flashing (green/yellow): - load current warning limit reached 80% yellow: - overload or short circuit until disconnection red: - after disconnection due to overload, short circuit or temperature - after undervoltage disconnection in ON condition of operating voltage with automatic reset flashing (red/OFF): - upon changed rating adjustment OFF: - devices switched off via ON/OFF switch - no operating voltage with ON/OFF switch in ON condition
Load circuit	
Load output	power MOSFET switching output (plus switching)
Load current warning limit ($\mathrm{L}_{\text {Limit }}$) hysteresis	typically $0.8 \times I_{N}$ typically 5\%
Overload disconnection $\left(\mathrm{I}_{\mathrm{OL}}\right)$	typically $1.2 \times \mathrm{I}_{\mathrm{N}}\left(1.05 \ldots 1.35 \times \mathrm{I}_{\mathrm{N}}\right)$ (see time/current characteristic)
Short circuit current ($\mathrm{I}_{\text {SC }}$)	active current limitation with $\mathrm{I}_{\mathrm{SC}}=$ typically $2.5 \times \mathrm{I}_{\mathrm{N}}, 1 \mathrm{~A}$ typically $1.4 \times \mathrm{I}_{\mathrm{N}}, 2 \mathrm{~A}-10 \mathrm{~A}$ (see time/current characteristic)
Trip times	at overload disconnection $\left(\mathrm{l}_{\mathrm{OL}}\right)=$ typ. 3 s at short circuit current (l_{SC}) = typically 0.1 s (see time/current characteristic)
Temperature disconnection hysteresis	internal temperature monitoring with monitoring electronic disconnection typically $+100^{\circ} \mathrm{C}$ typically $10^{\circ} \mathrm{C}$
Operating voltage monitoring with regard to low voltage	OFF at typically $U_{B}<16.0 \mathrm{~V}$ ON at typically $\mathrm{U}_{\mathrm{B}}>17.5 \mathrm{~V}$ with automatic ON and OFF switching

Technical data ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{B}}=\mathrm{DC} 24 \mathrm{~V}$)

Table 1: typical voltage drop, current limitation, max. load current

Current rating	Typical voltage drop U_{ON} at I_{N}	active current limitation	Max. load current at 100 \% ON duty	
			$\mathrm{T}_{\text {AMB }}=40^{\circ} \mathrm{C}$	$\mathrm{T}_{\text {AMB }}=50^{\circ} \mathrm{C}$
1 A	15 mV	$2,5 \times \mathrm{I}_{\mathrm{N}}$	1 A	1 A
2 A	30 mV	$1,4 \times \mathrm{I}_{\mathrm{N}}$	2 A	2 A
3 A	45 mV	$1,4 \times \mathrm{I}_{\mathrm{N}}$	3 A	3 A
4 A	60 mV	$1.4 \times \mathrm{I}_{\mathrm{N}}$	4 A	4 A
5 A	75 mV	$1.4 \times \mathrm{I}_{\mathrm{N}}$	5 A	5 A
6 A	90 mV	$1,4 \times \mathrm{I}_{\mathrm{N}}$	6 A	5 A
7 A	105 mV	$1,4 \times \mathrm{I}_{\mathrm{N}}$	7 A	6 A
8 A	120 mV	$1,4 \times \mathrm{I}_{\mathrm{N}}$	8 A	7 A
9 A	135 mV	$1,4 \times \mathrm{I}_{\mathrm{N}}$	9 A	8 A
10 A	150 mV	$1,4 \times \mathrm{I}_{\mathrm{N}}$	10 A	9 A

Note: When mounted side-by-side without convection, the devices should carry max 80% of their rated load continuously (100 \% ON duty).

Time/current characteristic curve ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{B}}=\mathrm{DC} 24 \mathrm{~V}$)

Order numbering code

Type No.
ESX10 Electronic Circuit Protector, with current limitation
Mounting
S plug-in, with rotary switch for 10-step current rating adjustment
from 1 A to 10 A
Version
1 without physical isolation
Signal input
0 without signal input (only version -S103)
1 control input I_{N} (only version -S114/-S115/-S117)
2 with reset input RE (only version -S124/-125/-127)
Signal output:
3 signal change-over contact (only version -S103)
4 status output SF (only version -S114/-124)
5 signal contact (only version -S115/-125)
7 status output SF, inverted (only version $-\mathrm{S} / 117 /-$ S127)
Operating voltage
DC 24 V voltage rating DC 24 V
Current ratings
1A-10 A adjustable
ESX10-S 1 0 3-DC 24V-1 A-10 A ordering example
Standard types:
ESX10-S103-DC24V-1A...10A
ESX10-S127-DC24V-1A...10A

Schematic diagram ESX10-S127 (example)

Please note

- The user has to ensure that the cable cross section of the load circuit in question complies with the current rating of the ESX10-S used.
- In addition special precautions must be taken in the system or machine (e.g. use of a safety PLC) which reliably prevent an automatic re-start of parts of the system (cf. Machinery Directive 2006/42/EG and EN 60204-1, Safety of Machinery). In the event of a failure (short circuit/overload) the load circuit will be disconnected electronically by the ESX10-S.

Wiring diagrams

The auxiliary contacts are shown in the OFF or fault condition

ESX10-S103
without signal input
with signal output F (group signal, change-over)

Standard condition: SC/SO closed, SC-SI open Fault condition: SC/SO open, SC-SI closed

ESX10-S115

with signal input IN+ with signal output F (group signal, N/O)

ESX10-S124
with reset input RE
with status indication SF

Standard condition: SF $+24 \mathrm{~V}=\mathrm{OK}$
Fault condition:
SF OV

ESX10-S127
with reset input RE
with status indication SF inverted

Standard condition: SF $0 \mathrm{~V}=\mathrm{OK}$ Fault condition: $\quad \mathrm{SF}+24 \mathrm{~V}$

ESX10-S114
with signal input IN+
with status indication SF

Standard condition: SF+24V = OK Fault condition: SF OV

ESX10-S117
with signal input IN+ with status indication SF inverted

Standard condition: SF OV = OK Fault condition: \quad SF +24V

ESX10-S125
with reset input RE
with signal output F (group signal, N / O)

Standard condition: SC/SO closed
Fault condition: SC/SO open

Dimensions ESX10-S

Accessories

Module 17plus
For technical data see section Power Distribution Systems

All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness, the right to make changes in these specifications without notice is reserved. Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

